High value collaboration – the international opportunity for the UK

Ben Sheridan, BSI
Role of standards in support of innovation

• Report by IfM identified how successful innovation systems (US & Germany) adopt strategic approach from an early stage.

• Technologies at different stages of emergence require different response from standards.

• Companies at difference stages of maturity also require different standards response.

• **Critical to success of strategic approach is the partnership of standards development organisation with convening partner.**
Organisations need all three types of Standards to deliver products and services for the rapidly changing world market.
Examples of different types of standards

Product

Technical interoperability – underpins efficiency and focusses innovation in areas that add value

- Interoperable components
- Materials specifications
- Test & verification methods
- Interoperability of data
 - Concept models
 - Discovery
 - Formats
 - Use of data

Process

Demonstration of quality – enables organisations to work together

Management Systems

- Environmental Management Systems (ISO 14001)
- Information Security (ISO 27001)

Process optimisation

- Design for Remanufacture (BS 8887)
- Asset Management (ISO 55000)

Framework

Values & Behaviour

- Better collaboration (BS 11000)
- Smart City decision making framework (PAS 181)
- Robot ethics (BS 8611)
New approach to handling complex issues – Smart Cities

- Partnership between BSI and Future Cities Catapult – Cities Standards Institute.

- Builds on:
 - PAS 180 smart cities terminology
 - PAS 181 smart cities framework
 - PAS 182 smart cities data concept model
 - PD 8101 planning of future city developments
 - PD 8100 Overview of smart cities
Definition of Digital Manufacturing: e-Enablement of value chain optimisation

- Digital manufacturing is the **collaborative** transformation of manufacturing through the exploitation of advances in ICT

- Digital manufacturing transformation enables new supply chain and operations capabilities (scenarios) to emerge that exploit advances in digital technologies, devices, data analytics, data integration and management across the value chain in many sectors

- Digital manufacturing requires the development of new systems engineering competencies (systems modeling, simulation and interface design) and skills (attitudes) across the manufacturing value chain (R&D, design, supply, production, distribution, in service, disposal)

- Digital manufacturing offers significant national and corporate competitive advantage through affordable flexibility, personalisation and product/service tailoring
Digital Manufacturing scenarios

1. Automated e-Sourcing
 - Seamlessly connected automated replenishment from supplier network (multiple tiers) with real-time KPI monitoring, predictive disruption analytics

2. Digital Factory Design
 - Digital 3D modelling systems for factory layout design, process and material flow simulation

3. Real-time Factory Scheduling
 - Advanced factory execution systems with sensor-enabled, smart devices, real-time data KPI monitoring, predictive maintenance

4. Flexible Factory Automation
 - Advanced manufacturing plant/machine reconfiguration, scale flexibility, varied levels of human-robot-collaboration

5. Digital Production Processes
 - Application of digital production processes (e.g. additive manufacturing, continuous processing) with advanced process analytics

6. e-Commerce Fulfilment
 - Web-based order management (configuration, pricing etc.) and inventory deployment to multiple points of sale, covering last-mile and direct delivery (all tiers through to end users)

7. Extended Supply Chain (near) real-time Monitoring
 - Extended ‘end-to-end’ supply chain visualisation ‘watch towers’ for near real-time monitoring and decision making

8. Digital Product Quality
 - Digital product quality management systems for connecting ‘traceability islands’ back from customers to suppliers (root cause analytics)

9. Digital Supply Network Design
 - Design tools to architect supply network configuration – optimisation and visualisation of site location, capacity, inventory etc.

10. Product Lifecycle Management
 - Nextgen PLM systems that provide accurate, up-to-date product information accessible throughout the value chain and product lifecycle

© Centre for International Manufacturing, IfM, 2016
There is a clear need for initiatives and standards to encourage collaboration as key to UK success in digital manufacturing.

- Overcoming the skills and technological gaps for intra company digital scenarios is easier than for inter company scenarios.
- The greater relative difficulty for intercompany scenarios is evidence of the need for initiatives and standards to encourage collaboration and sharing.
Initial view of standards to accelerate innovation in digital manufacturing

- **Interoperability of data and machines.** Establish what data are recorded and in what format (e.g. RAMI4.0, ISO Smart Manufacturing SAG, IEC SG8)

- **Using data in a manufacturing context.** Engineering decisions (relating to e.g. product quality, supply chain optimisation & resilience, asset maintenance, design) will be made based on wide range of fast-moving data. Each actor in the supply chain needs to be aware of how these data are being used, and for what purpose, and therefore what needs to be done.

- **Governance in a digital environment.** How do we make decisions based on others data? Are the data secure enough and reliable, and is ownership clear? What does the company need to do to manage risks from using data? May require a common ‘decision making framework’ across supply chains.

- **Performance assurance of ‘digital’ twins.** Real, physical systems will be made using virtual modelling capabilities. For these to be widely adopted and exploited there needs to be confidence in their results – assurance.

- **Collaboration.** Digital innovation in manufacturing is driving behaviour away from transactional relationships towards more collaboration. All actors need to understand the basis of the collaboration, have common expectations, and what their obligations are in the partnership (e.g. BS 11000).

- **Others.** Obsolescence management, design for ‘X’, management systems in a flexible manufacturing context.
High value collaboration – the international opportunity for the UK

Ben Sheridan, BSI