PRODUCT
Design for Manufacture and Design for Assembly

Project Success
- Improved
 - Efficiency
 - Safety
 - Quality
 - Decision Making
- Reduced
 - Exposure to Risk
 - Cost
 - Lead times
 - Waste
PRODUCT
Design for Manufacture and Design for Assembly

- Design Assessment
- Method of Manufacture
- Method of Assembly
- Optimised Virtual Prototype
PROCESS

Process Cost Modelling and Environmental Impact Assessment

Product
• Design Assessment
• Method of Manufacture
• Method of Assembly
• Optimised Virtual Prototype

Process
• Cost Modelling
• Environmental Impact Assessment

Production
• Supply vs Demand Analysis
• Simulation of Throughput
• Virtual Facility Layout

Parts Supply
• Analysis of Supply Chain Strategies
• Impact Assessment of Key Resources
• Feasibility of Project Plans

Quality Assurance Framework

Project Success
• Improved
 • Efficiency
 • Safety
 • Quality
 • Decision Making

• Reduced
 • Exposure to Risk
 • Cost
 • Lead times
 • Waste
Example of a Process Cost Model

Figures on the right demonstrate the types of outputs the cost model can provide: operational cost of component manufacture, total non-operational cost of facility.
PRODUCTION
Facility Design and Layout

Product
- Design Assessment
- Method of Manufacture
- Method of Assembly
- Optimised Virtual Prototype

Process
- Cost Modelling
- Environmental Impact Assessment

Production
- Supply vs Demand Analysis
- Simulation of Throughput
- Virtual Facility Layout

Parts Supply
- Analysis of Supply Chain Strategies
- Impact Assessment of Key Resources
- Feasibility of Project Plans

Project Success
- Improved
 - Efficiency
 - Safety
 - Quality
 - Decision Making
- Reduced
 - Exposure to Risk
 - Cost
 - Lead times
 - Waste

Quality Assurance Framework
PRODUCTION
Facility Design and Layout

- Supply vs Demand Analysis
- Simulation of Throughput
- Virtual Facility Layout
PARTS SUPPLY
Supply Chain Modelling

Product
• Design Assessment
• Method of Manufacture
• Method of Assembly
• Optimised Virtual Prototype

Process
• Cost Modelling
• Environmental Impact Assessment

Production
• Supply vs Demand Analysis
• Simulation of Throughput
• Virtual Facility Layout

Parts Supply
• Analysis of Supply Chain Strategies
• Impact Assessment of Key Resources
• Feasibility of Project Plans

Project Success
• Improved
 • Efficiency
 • Safety
 • Quality
 • Decision Making
• Reduced
 • Exposure to Risk
 • Cost
 • Lead times
 • Waste

Quality Assurance Framework
- Analysis of Supply Chain Strategies
- Impact Assessment of Key Resources
- Feasibility of Project Plans
QUALITY ASSURANCE FRAMEWORK
Planning for Manufacturing Quality

Project Success
- Improved
 - Efficiency
 - Safety
 - Quality
 - Decision Making
- Reduced
 - Exposure to Risk
 - Cost
 - Lead times
 - Waste

Quality Assurance Framework

Product
- Design Assessment
- Method of Manufacture
- Method of Assembly
- Optimised Virtual Prototype

Process
- Cost Modelling
- Environmental Impact Assessment

Production
- Supply vs Demand Analysis
- Simulation of Throughput
- Virtual Facility Layout

Parts Supply
- Analysis of Supply Chain Strategies
- Impact Assessment of Key Resources
- Feasibility of Project Plans
QUALITY ASSURANCE FRAMEWORK
Planning for Manufacturing Quality

Phases of Advanced Product Quality Planning [XR Training 2017]

- **Concept Approval**
 - **Planning**
 - **Product Design & Development**
 - **Process Design & Development**
 - **Product & Process Validation**
- **Program Approval**
- **Prototype**
- **Pilot**
- **SOP**

Phase 1: Plan & define program
Phase 2: Product design verification
Phase 3: Process design verification
Phase 4: Product & Process validation
Phase 5: Feedback from production, corrective actions
Effective implementation will help you realise:

Improved:
- Efficiency
- Safety
- Quality
- Decision Making

Reduced:
- Cost
- Lead times
- Waste
- Exposure to Risk
“The MTC have brought their insights from the world of Aerospace and Automotive, showing us how to master and continuously improve on design, quality, supply chain analysis, collaboration and delivery. Cross pollination such as this must be the way to address productivity and efficiency in construction.”